Joanna Bruzda https://orcid.org/0000-0002-7451-3592

© Joanna Bruzda Artykuł udostępniony na licencji CC BY-SA 4.0

ARTYKUŁ

(Angielski) PDF

STRESZCZENIE

Modal regression is a relatively new statistical technique that serves the purpose of modelling the modal value of a variable conditional on a set of explanatory variables. The aim of the study discussed in this paper is to assess the usefulness of modal regression in the analysis of economic time series and, more specifically, in short-term macroeconomic forecasting, on the example of industrial output indexes of 27 OECD countries. We focus on models of univariate time series and pose a question whether linear and nonlinear (threshold type) modal autoregression leads to more trustworthy macroeconomic forecasts than standard approaches based on modelling other measures of central tendency. The credibility of forecasts is understood as appropriately defined accuracy of point forecasts, and as narrow forecast intervals.
Our empirical results demonstrate that linear modal autoregression can compete with other linearly-specified models both in terms of the aggregate forecast accuracy and the lengths of prediction intervals. It should be mentioned, however, that in the case of the study described in this paper, carried out on the data sample spanning the period from January 1994 to December 2019 and the period of forecasting allowing the determination of 100 forecasts in time horizon from one to four months according to the rolling schema, narrower prediction intervals in comparison with other estimation methods have turned out more likely for lower nominal confidence levels such as 80% and below, while differences in precision measurements, including credibility differences, have rarely proved statistically significant. Our analysis also shows that narrow-interval forecasts of economic growth rates might require specifying a GARCH equation, but on the other hand, at certain confidence levels and forecast horizons, models with GARCH equations might be outperformed in this respect by nonlinear (in mean or mode) autoregression. Another interesting fact is that modal autoregression minimises the robustified sMAPE indicators for one-step-ahead forecasts of the output indexes.

SŁOWA KLUCZOWE

forecasting, modal regression, industrial production, univariate time series models

JEL

C13, C22, C53, E37

BIBLIOGRAFIA

Berger, D., Dew-Becker, I., & Giglio, S. (2020). Uncertainty Shocks as Second-Moment News Shocks. The Review of Economic Studies, 87(1), 40–76. https://doi.org/10.1093/restud/rdz010.

Botev, Z. I., Grotowski, J. F., & Kroese, D. P. (2010). Kernel Density Estimation via Diffusion. The Annals of Statistics, 38(5), 2916–2957. https://doi.org/10.1214/10-aos799.

Bruzda, J. (2007). Procesy nieliniowe i zależności długookresowe w ekonomii. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.

Bruzda, J. (2019). Quantile Smoothing in Supply Chain and Logistics Forecasting. International Journal of Production Economics, 208, 122–139. https://doi.org/10.1016/j.ijpe.2018.11.015.

Chauvet, M., & Potter, S. (2013). Forecasting Output. In G. Elliott & A. Timmermann (Eds.), Handbook of Economic Forecasting (vol. 2A, pp. 141–194). North-Holland. https://doi.org/10.1016/B978-0-444-53683-9.00003-7 .

Chen, Y.-C., Genovese, C. R., Tibshirani, R. J., & Wasserman, L. (2016). Nonparametric Modal Regression. Annals of Statistics, 44(2), 489–514. https://doi.org/10.1214/15-aos1373.

Clark, T., & McCracken, M. (2013). Advances in Forecast Evaluation. In G. Elliot & A. Timmermann (Eds.), Handbook of Economic Forecasting (vol. 2B, pp. 1107–1203). North-Holland. https://doi.org/10.1016/B978-0-444-62731-5.00020-8.

Clements, M. P. (2005). Evaluating Econometric Forecasts of Economic and Financial Variables. Palgrave Macmillan. https://doi.org/10.1057/9780230596146.

Dimitriadis, T., Patton, A. J., & Schmidt, P. W. (2024). Testing Forecast Rationality for Measures of Central Tendency. https://arxiv.org/pdf/1910.12545.

Einbeck, J., & Tutz, G. (2006). Modelling beyond regression functions: an application of multimodal regression to speed-flow data. Journal of the Royal Statistical Society. Series C: Applied Statistics, 55(4), 461–475. https://doi.org/10.1111/j.1467-9876.2006.00547.x.

Elliott, G., & Timmermann, A. (2008). Economic Forecasting. Journal of Economic Literature, 46(1), 3–56. https://doi.org/10.1257/jel.46.1.3.

Elliott, G., & Timmermann, A. (2016). Economic Forecasting. Princeton University Press.

Enders, W., & Granger, C. W. J. (1998). Unit-Root Tests and Asymmetric Adjustment With an Example Using the Term Structure of Interest Rates. Journal of Business & Economic Statistics, 16(3), 304–311. https://doi.org/10.2307/1392506.

Fagiolo, G., Napoletano, M., & Roventini, A. (2008). Are Output Growth-Rate Distributions Fat-Tailed? Some Evidence from OECD Countries. Journal of Applied Econometrics, 23(5), 639–669. https://doi.org/10.1002/jae.1003.

Feng, Y., Fan, J., & Suykens, J. A. K. (2020). A Statistical Learning Approach to Modal Regression. Journal of Machine Learning Research, 21(1), 25–59. https://dl.acm.org/doi/10.5555/3455716.3455718 .

Gambetta, D. (1988). Can We Trust Trust?. In D. Gambetta (Ed.), Trust. Making and Breaking Cooperative Relations (pp. 213–237). Basil Blackwell.

Giacomini, R., & White, H. (2006). Tests of Conditional Predictive Ability. Econometrica, 74(6), 1545–1578. https://doi.org/10.1111/j.1468-0262.2006.00718.x.

Gneiting, T. (2011). Making and Evaluating Point Forecasts. Journal of the American Statistical Association, 106(494), 746–762. https://doi.org/10.1198/jasa.2011.r10138.

Granger, C. W. J., & Teräsvirta, T. (1993). Modelling Nonlinear Economic Relationships. Oxford University Press. https://doi.org/10.1093/oso/9780198773191.001.0001.

Heinrich, C. (2014). The mode functional is not elicitable. Biometrika, 101(1), 245–251. https://doi.org/10.1093/biomet/ast048.

Heinrich-Mertsching, C., & Fissler, T. (2021). Is the Mode Elicitable Relative to Unimodal Distributions?. Biometrika, 109(4), 1157–1164. https://doi.org/10.1093/biomet/asab065.

Hyndman, R. J. (1995). Highest-density Forecast Regions for Non-linear and Non-normal Time Series Models. Journal of Forecasting, 14(5), 431–441. https://doi.org/10.1002/for.3980140503.

Kemp, G. C. R., Parente, P. M. D. C., & Santos Silva, J. M. C. (2020). Dynamic Vector Mode Regression. Journal of Business and Economic Statistics, 38. https://doi.org/10.1080/07350015.2018.1562935 .

Kemp, G. C. R., & Santos Silva, J. M. C. (2012). Regression Towards the Mode. Journal of Econometrics, 170(1), 92–101. https://doi.org/10.1016/j.jeconom.2012.03.002.

Koenker, R., & Bassett, G. Jr. (1978). Regression Quantiles. Econometrica, 46(1), 33–50. https://doi.org/10.2307/1913643.

Koenker, R., & Xiao, Z. (2006). Quantile Autoregression. Journal of the American Statistical Association, 101(475), 980–990. https://doi.org/10.1198/016214506000000672.

Krief, J. M. (2017). Semi-linear mode regression. The Econometrics Journal, 20(2), 149–167. https://doi.org/10.1111/ectj.12088.

Kröger, S., & Pierrot, T. (2019). What point of a distribution summarises point predictions? (WZB Discussion Paper No. SP II 2019-212). http://hdl.handle.net/10419/206533.

Lee, M. J. (1989). Mode Regression. Journal of Econometrics, 42(3), 337–349. https://doi.org/10.1016 /03044076(89)90057-2 .

Makridakis, S. (1993). Accuracy Measures: Theoretical and Practical Concerns. International Journal of Forecasting, 9(4), 527–529. https://doi.org/10.1016/0169-2070(93)90079-3.

Makridakis, S., & Hibon, M. (2000). The M3-Competition: results, conclusions and implications. International Journal of Forecasting, 16(4), 451–476. https://doi.org/10.1016/S0169-2070(00)00057-1.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The M4 Competition: 100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1), 54–74. https://doi.org/10.1016/j.ijforecast.2019.04.014.

Manski, C. F. (1991). Regression. Journal of Economic Literature, 29(1), 34–50.

Newey, W. K., & West, K. D. (1987). A Simple, Positive Semi-Definite, Heteroskedasticity and Auto- correlation Consistent Covariance Matrix. Econometrica, 55(3), 703–708. https://doi.org/10.2307 /1913610 .

Pońsko, P., & Rybarczyk, B. (2016). Fan Chart – a tool for NBP’s monetary policy making (NBP Working Paper No. 241). https://static.nbp.pl/publikacje/materialy-i-studia/241_en.pdf.

Sager, T. W., & Thisted, R. A. (1982). Maximum Likelihood Estimation of Isotonic Modal Regression. The Annals of Statistics, 10(3), 690–707. https://doi.org/10.1214/aos/1176345865.

Stockhammar, P., & Öller, L.-E. (2011). On the Probability Distribution of Economic Growth. Journal of Applied Statistics, 38(9), 2023–2041. https://doi.org/10.1080/02664763.2010.545110.

Temple, J. (1999). The New Growth Evidence. Journal of Economic Literature, 37(1), 112–156. https://doi.org/10.1257/jel.37.1.112.

Ul Hassan, M., & Stockhammar, P. (2016). Fitting Probability Distributions to Economic Growth: A Maximum Likelihood Approach. Journal of Applied Statistics, 43(9), 1583–1603. https://doi.org/10.1080/02664763.2015.1117586.

Ullah, A., Wang, T., & Yao, W. (2021). Modal Regression for Fixed Effects Panel Data. Empirical Economics, 60(1), 261–308. https://doi.org/10.1007/s00181-020-01999-w.

Ullah, A., Wang, T., & Yao, W. (2022). Nonlinear modal regression for dependent data with application for predicting COVID-19. Journal of the Royal Statistical Society Series A: Statistics in Society, 185(3), 1424–1453. https://doi.org/10.1111/rssa.12849.

Ullah, A., Wang, T., & Yao, W. (2023). Semiparametric Partially Linear Varying Coefficient Modal Regression. Journal of Econometrics, 235(2), 1001–1026. https://doi.org/10.1016/j.jeconom.2022.09.002 .

Wang, T. (n.d.). Parametric Modal Regression with Autocorrelated Error Process. Statistica Sinica. Advance online publication. https://doi.org/10.5705/ss.202021.0405.

Weiss, A. A. (1996). Estimating Time Series Models Using the Relevant Cost Function. Journal of Applied Econometrics, 11(5), 539–560. https://doi.org/10.1002/(SICI)1099-1255(199609)11:5%3C539::AID-JAE412%3E3.0.CO;2-I.

West, K. D. (2006). Forecast Evaluation. In G. Elliot, C. W. J. Granger & A. Timmermann (Eds.), Handbook of Economic Forecasting (vol. 1, 99–134). North-Holland. https://doi.org/10.1016/S1574-0706(05)01003-7.

Xiang, S., & Yao, W. (2022). Nonparametric statistical learning based on modal regression. Journal of Computational and Applied Mathematics, 409, 1–15. https://doi.org/10.1016/j.cam.2022.114130.

Yao, W., & Li, L. (2014). A New Regression Model: Modal Linear Regression. Scandinavian Journal of Statistics, 41(3), 656–671. https://doi.org/10.1111/sjos.12054.

Yao, W., Lindsay, B. G., & Li, R. (2012). Local Modal Regression. Journal of Nonparametric Statistics, 24(3), 647–663. https://doi.org/10.1080/10485252.2012.678848.

Zhu, Y., & Timmermann, A. (2020). Can Two Forecasts Have the Same Conditional Expected Accuracy?. https://doi.org/10.48550/arXiv.2006.03238.

Do góry
© 2019-2022 Copyright by Główny Urząd Statystyczny, pewne prawa zastrzeżone. Licencja Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0 (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0